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We consider plane flows of identical, smooth, nearly elastic, circular disks interacting 
with a boundary formed by attaching halves of similar disks at  equal intervals along 
a flat wall. The roughness of the boundary is given in terms of the diameters of the 
two types of disks and the spacing of the wall disks. We suppose that the velocity 
distribution of the flow disks is Maxwellian and calculate the rates at which 
momentum and energy are supplied to the flow disks in collisions over a unit length of 
the boundary. At the boundary we balance these supplies with the stress and the 
total flux of energy in the flow and obtain boundary conditions on the shear stress, 
pressure, and flux of fluctuation energy. We find that the boundary can either supply 
fluctuation energy to the flow or absorb it, depending on the relative magnitudes of 
the rate of working of the boundary tractions through the slip velocity and the rate 
at which energy is dissipated in collisions. As an example we solve the boundary-value 
problem for the steady shearing flow maintained by the relative motion of parallel 
plates a fixed distance apart. When the dimensions and properties of the flow disks 
and the boundary are given, the specification of the distance between the plates and 
their relative velocity determines the slip velocity, the shear stress and pressure 
necessary to maintain the flow, and the distributions of mean velocity, fluctuation 
energy, and density. 

1. Introduction 
In the past few years there has been a resurgence of interest in the study of rapid 

deformations of granular materials. Such deformations of relatively dense systems 
are important in many materials-handling applications in the mining, cereal, and 
pharmaceutical industries and often occur naturally in the form of avalanches, rock 
debris slides, and pack-ice flows. 

Experiments on steady shearing flows of idealized materials, inspired by Bagnold’s 
(1954) pioneering work, have been carried out by Savage (1978), Savage & McKeown 
(1983), Savage & Sayed (1984), and Hanes & Inman (1985) and form the experimental 
basis for the development of theory. In addition, the unique numerical simulations 
of the detailed dynamics of circular disks in simple plane flows by Campbell & 
Brennen (1983, 1985), Walton (1983), and Campbell & Gong (1986) provide extremely 
detailed information against which theory can be compared. 

Recent theories for rapid deformations of granular materials depart from Bagnold’s 
(1954) heuristic treatment of grain collisions and take into account explicitly the 
energy associated with the velocity fluctuations of the grains. These theories differ 
mainly in the degrees of detail employed when calculating averages. 
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The most detailed development of theory employs methods from the kinetic theory 
of dense gases, extended to account for the energy dissipated in collisions, to 
determine the single-particle velocity distribution function as an approximate 
solution to its equation of evolution. The influence of the dense nature of the system 
on the frequency of collisions is taken into account in a way proposed by Enskog 
(Chapman & Cowling 1970). Lun et al. (1984) and Jenkins & Richman (1985~)  
provide such a theory for identical, smooth, nearly elastic spheres and Jenkins & 
Richman (1985b) do the same for identical, rough, inelastic, circular disks, a t  least 
when the energy dissipated in collisions is not too great. 

In  similar, but somewhat cruder approaches, the single-particle velocity distribu- 
tion function is assumed to be Maxwellian and Enskog’s treatment of collisions is 
employed. Theories of this type include Savage & Jeffrey’s (1981) original introduction 
of methods from the kinetic theory into the subject, the extension of their results 
from identical, smooth, elastic spheres to nearly elastic spheres by Jenkins & Savage 
(1983), the derivation of stress relations for the homogeneous shearing of identical, 
rough, inelastic spheres by Lun & Savage (1986), and theory for binary mixtures 
of smooth, nearly elastic, circular disks or spheres by Jenkins & Mancini (1986). 

Other simpler and perhaps more transparent methods of averaging have been 
employed by Ogawa, Umemura & Oshima (1980) and Ackermann & Shen (1983) for 
spheres, by Shen & Ackermann (1984) for circular disks, and by Shen (1984) for a 
binary mixture of spheres. A phenomenological theory proposed by Haff (1983) has 
the same physical foundations and essentially the same structure as the kinetic 
theories for dense systems of smooth, nearly elastic spheres or disks. 

These theories have all been tested against both the experiments on shearing flow 
and the corresponding numerical simulations, typically by determining the predicted 
magnitudes of the shear stress and the pressure in simple shear. However this simple 
flow, involving a uniform velocity gradient, fluctuation energy, and density is 
probably exceptional, given that slip is inevitably observed at the boundaries in the 
experiments and that, in general, fluctuation energy will be removed from or supplied 
to the flow at the boundaries. What is required in order to make a fair comparison 
with the experiments, are derivations of boundary conditions that are as detailed as 
the derivations of the constitutive relations for the flow. 

One such derivation has been provided by Hui et al. (1984) who operate in the spirit 
of Haffs (1983) phenomenological theory and characterize a boundary in terms of 
its coefficient of restitution in a collision with a flow particle and a roughness 
parameter. They derive expressions for the rates at which energy is dissipated and 
tangential momentum is transferred in collisions over a unit area of the boundary. 
They equate the former to the flux of fluctuation energy from the flow and the latter 
to the shear stress in the flow, and obtain boundary conditions relating the 
fluctuation energy to its derivative normal to the wall and the slip velocity to the 
normal derivative of the flow velocity. They employ these boundary conditions with 
the balance laws and constitutive relations of Haff s (1983) theory to analyse a steady 
shearing flow maintained between parallel flat plates by their relative motion. 

Here we consider plane flows of identical, smooth, nearly elastic, circular disks 
interacting with a boundary composed of halves of similar disks attached at equal 
intervals to a flat wall. We first employ methods of averaging from the kinetic theory 
to derive expressions for the rate at which linear momentum and energy are supplied 
to the flow disks in collisions with the boundary. Then, at the boundary, we balance 
these supplies with the corresponding quantities in the flow. The resulting boundary 
conditions differ from those of Hui et al. (1984) in three major respects. 
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FIGURE 1. The geometry of the boundary and collisions. 

First, an explicit measure of the roughness of the boundary is determined in terms 
of the diameters of the two types of disks and the spacing of the wall disks. 

Secondly, the boundary condition on the flux of fluctuation energy contains the 
rate of working of the boundary tractions through the slip velocity in addition to 
the rate at which energy is dissipated in collisions. Consequently the boundary may 
either supply fluctuation energy to the flow or absorb it, depending upon the relative 
size of these two terms. Their relative size depends upon the diameters of the two 
types of disks, the energy lost in the two types of collisions, and the spacing of the 
wall disks. The exceptional case, in which the two terms balance, corresponds to a 
homogeneous shearing flow with uniform velocity gradient, fluctuation energy, and 
area fraction. 

Thirdly, a boundary condition on the flow pressure is obtained. In  our view, this 
condition fixes the density or, equivalently, the area fraction of the flow disks a t  a 
boundary and, for example, forces a unique solution to the boundary-value problem 
for steady shearing between parallel plates. That is, given the properties of the two 
types of disks, the spacing of the wall disks, the distance between the plates, and their 
relative velocity, there are unique distributions of mean velocity, fluctuation energy, 
and area fraction corresponding to uniquely determined values of the shear stress, 
pressure, and slip velocity at the plates. 

In Appendix A we sketch a similar derivation of boundary conditions for identical, 
smooth, nearly elastic spheres interacting with a bumpy boundary. The boundary 
is assumed to be constructed by attaching identical, smooth, nearly elastic hemi- 
spheres to a flat wall. The centres of the hemispheres are assumed to be randomly 
distributed over the wall with a fixed mean spacing. 

2. Boundary geometry 
We consider a plane flow of identical, smooth, circular disks with mass m and 

diameter g interacting with a bumpy boundary. The geometry of the boundary is 
shown in figure 1. Halves of identical, smooth, circular disks are equally spaced along 
a flat wall. The diameter of each wall disk is d and the spacing between them is s. 
The maximum spacing between the disks is fixed by the requirement that a flow disk 
never collides with the flat wall. Consequently, the range of the spacing is given in 
terms of the diameters of the two types of disks by 0 < s / d  < - 1 + ( I  + 2o/d)t .  The 
number a of wall disks per unit length of the wall is l / ( d + s ) .  

Because of the presence of neighbouring half disks, only a fraction of the periphery 
of a wall disk is accessible to flow disks. From figure 1, this fraction is equal to 28/7c, 
where sine = (d+s) / (d+a) .  As 8 increases, more of the periphery of a wall disk is 
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available for collisions and, consequently, the boundary appears rougher. The 
magnitude of sin 8 is a natural measure of this roughness. 

3. Boundary collisions 
We suppose that the wall is translating with velocity U and consider a collision 

between a flow disk and a wall disk. At collision, the orientation of the line of centres 
is given by the unit vector k,  directed from the centre of the wall disk to the centre 
of the flow disk. As indicated in figure 1, neighbouring wall disks will not prohibit 
the collision provided that the angle k between k and the unit inward normal N to 
the wall is between - 8 and + 8. 

The velocity c of the centre of a flow disk immediately before the collision is related 
to its velocity c' immediately after the collision through 

mc' = mc+ J, (1) 

where J is the impulse exerted by the wall disk on the flow disk. We assume that 
the velocity U of the wall disk is unaffected by the collision. 

We characterize the energy lost in the collision by assuming that the relative 
velocity g = U-c  of the particle centres just before the collision is related to that, 
g' = U-c', just after the collision through the coefficient of restitution e,, 

( g * k )  = -e,(g*k). (2) 

For smooth disks, (1) and (2) may be used to determine the impulse J; then, upon 
eliminating J from (i), we may write the relation between the velocities before and 

(3) 
after collision as 

c '=  c + ( l + e , ) ( g * k ) k .  

From this it follows easily that 

(4) c ' ~  = c2 + 2(1+ e,) ( g - k )  ( U  k )  - (1 - e k )  (g*k)2 .  

where, for example, c2 = c-c. 

4. Mean collisional rates of supply 
We first determine an expression for the probable frequency of collisions per unit 

length of the flat wall. 
A t  time t ,  the probable number of flow disks with centres in the area element dr 

at position r and velocities within the increment dc at c is given in terms of the 
velocity distribution function f (c ,  I, t )  by f (c ,  I, t )  dcdr. Consequently, the number 
density n of flow disks is 

n(r, t )  = f(c, I, t )  dc, (5) s 
where the integration is to be taken over all values of c. The density p of the flow 
is mn and the area fraction v occupied by the disks is  nu*. The mean velocity u 
of the flow is 

~ ( r ,  t )  - ~f(c, I, t )  dc, (6) n 'I 
and the granular temperature T is defined by 

n (7) 
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where C = C-u is the fluctuation velocity. Knowledge of n, u, T, and all higher 
moments off with C determines f. 

During a time interval dt, a flow disk with velocity c in dc will collide wit,, a wall 
disk at some point within the element of angle dk about k provided that : it is moving 
towards the wall, g *k > 0;  neighbouring wall disks do not interfere, -8 < k < 8; 
and its centre is within the parallelogram of area 3 ( g * k )  dk dt, where 8 = a(d+v). 
Consequently, if the disks were dilute, the number of such collisions within a time 
dt would be 

where r is the position of the centre of the wall disk. 
Here, however, we wish to consider rather dense systems, so we follow Enskog and 

introduce into this expression a factor x that accounts for the effects of excluded area 
and collisional shielding on the frequency of collisions. Then the probable rate at 
which such collisions occur is 

f(c, r+3k,  t) 3(g*k)  d k  dc dt, (8) 

x f(c, r + 5 k )  3 ( g . k )  d k  dc. (9) 
The corresponding collisional frequency per unit length of the wall is obtained by 
multiplying this by the number a of wall disks per unit length. 

Let $ = $(c)  be a property associated with a flow disk and write A$ = $(c')- $ (c)  
for its change due to a collision with a wall disk. Then, per unit length of the wall, 
C($), the rate of change of $(c)  in collisions, is given by 

C($) = ax I I A $ ~ ( c , r + ~ k ) a ( g . k ) d k d c ,  

where the integrations are to be taken over all angles k, -8 < k < 0, and velocities 
c for which a collision is impending, g - k  2 0. 

When @ = mc, so that A$ = m(c'-c) = m(l+e,) (g-k) k by (3), we have the 
collisional rate of supply M of momentum to the flow per unit length of the wall : 

M =  axm(l+e,) kf(c,r+3k)3(g*k)2dkdc, II 
integrated over all possible collisions. 

When$ =&c2, so that A$=@(d2-c2) = m(l+ew)(g.k)(U.k)-@(l-e&)(g*k)2 
by (4), we have the collisional rate of supply E of energy to the flow per unit length 

E =  M ' U - D ,  (12) 
of the wall: 

where D is the energy lost to the flow in collisions, 

integrated over all possible collisions. 
In  order to calculate M and D we must have a definite expression for the velocity 

distribution function f of the flow disks. Jenkins & Richman (19858), for example, 
determine the form off for identical, rough, nearly elastic, circular disks by solving, 
in an approximate way, the equations governing the evolution of certain higher 
moments off. Here, however, we operate in a somewhat cruder fashion and simply 
suppose that f is Maxwellian: 

n 
f(c, r, t)  = - 

This will allow us to describe the essential features of the boundary's influence upon 
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the flow, a t  least when the collisions between the disks are nearly elastic. We could 
improve upon the resulting theory, at  the expense of more elaborate calculations, by 
employing the specialization of the distribution function determined by Jenkins & 
Richman (19853) to dense systems of smooth disks. 

When using the distribution function (14) to calculate the rate at which momentum 
and energy are supplied to the flow by the boundary, we do not assume that the mean 
flow velocity u at the boundary is equal to the boundary velocity U. We suppose 
that slip occurs, and introduce the slip velocity v :  

v =  u-u.  (15) 

Because the boundary is impenetrable, u*n = 0. Then, at the wall, 

n 92- 2g- v + v2 
2T f ( c ,  r )  = - exp [ - 27tT 

where n, u, and T are evaluated at r, the centre of a wall disk. 
The expressions for M and D involve f (c , r+Fk) ,  so we first expand this 

distribution function in a Taylor series about r. To truncate the expansion, we 
introduce a characteristic length L over which the mean fields are supposed to vary, 
write e = FL, and assume that 6 is small. Then, upon supposing that n u / T !  is of 
order €4 and that =TIT and n n / n  are of order e ,  we have 

I (17) 
- 

f ( c , r + 3 k )  = l + - [ ( k * V ) u ] . C  f ( c , r ) ,  

up to an error of order e. Next, we assume that 3 v / @  is of order €4, expand f(c, r), 
and ignore terms of order E :  

{ ;  

where the mean fields are evaluated at  r. 
We use this expansion in the expression (11) for M and, with the help of the 

integrals evaluated in Appendix B, carry out the integrations. The result, expressed 
in terms of rectangular Cartesian coordinates, is, up to an error of order E ,  

where we have used 3a = ?j sine, and 

I,),, = (# sin2 8- 2) N ,  Nb N y  - f sin2 O(N, ~~7~ + Np7,  7,, + N y  r, 7) ) ,  (20) 

in which 7, = - N ,  and r2 = N, are the components of a unit vector tangent to the 
wall. 

In order to obtain a similar expression for the loss of energy D, we must first 
characterize the size of ( 1  - ew) .  Here we assume that it is of order 8, then so also is 
the lowest-order contribution to D. In  addition, (1 +e,)  may be replaced by 2 
wherever it appears. Upon carrying out the integrations, we obtain 

D = (')'pX(l-ew)Tte cosece, (21) 

up to an error of order 8. 
We later show that the assumptions made regarding the order of various quantities 

and the retention of different order terms in the lowest-order expressions for M and 
D lead to a self-consistent solution to a boundary-value problem for the steady 
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shearing of nearly elastic disks. The assumptions correspond to those made by 
Jenkins & Richman (19853) in their calculation of constitutive relations for the flow. 

5. Flow equations and boundary conditions 
Jenkins & Richman (19853) derived balance laws for mass, momentum, fluctuation 

energy, and certain higher moments of the fluctuation velocity for a granular 
material consisting of identical, rough, inelastic, circular disks. Here we suppose that 
the flow disks are smooth and that their velocity distribution is Maxwellian. In  this 
event, we require only the balance laws for mass, linear momentum, and fluctuation 

(22)  
energy. These have the forms: p+pv*u = 0. 

where the dot indicates the time derivative calculated with respect to the mean 

pir = -V*P+nF, (23)  
motion : 

where P is the symmetric pressure tensor and F is the external force on a disk ; and 

pp= -V*Q-tr(P*Vu)-y, (24)  

where Q is the energy flux, tr denotes the trace, and y is the rate per unit area at  
which energy is dissipated in collisions. 

In general, the fluxes of momentum and energy are due both to transport between 
collisions and transfer in collisions. Here, however, we shall focus on the collisional 
contributions and ignore any transport. When the area fraction of flow disks is 
relatively large, this does not introduce a significant error. We also suppose that the 
diameter of the flow disks is of the same order as that of the wall disks and that so 
little energy is lost in collisions between flow disks that their coefficient of restitution 
e, like e,, differs from one by a quantity of order B. 

The dissipation rate y is given, up to a sign, by the specialization of equation (1 17) 
of Jenkins and Richman (19853) to smooth disks: 

In this, 

4 ( 1 - e ) ~ T  
y =  gz 

where the function go = go(v),  with 

accounts for the excluded area and the collisional shielding of flow disks. Likewise, 
the collisional contributions to the energy flux and the pressure tensor may be 
obtained from equations (100) and (98) of Jenkins & Richman (19853) by ignoring 
the perturbations to the distribution function and restricting attention to smooth 
disks. The resulting expressions are 

Q = - KVT, (28) 

and P = [2pvg0 T-;K tr  (D)] 1 --KO, (29) 

where D is the symmetric part of the velocity gradients Vu and 1 is the unit tensor. 
The constitutive relations (28)  and (29)  could be improved upon by retaining those 
terms in the perturbations that contribute at relatively large values of v. 

Boundary conditions are obtained by separately balancing the rate of change of 
linear momentum and total energy in a rectangle fixed in space with parallel sides 

3 FLM 171 
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of unit length situated at  the wall and in the flow. At  an impenetrable boundary, as 
the height of the rectangle goes to zero, the rate Ma at which momentum is supplied 
to it by the wall and the rate -Pas N,  at which momentum is supplied to it by the 
flow must sum to zero. Hence, we have 

Ma = Pas Ns. (30) 

In the same limit, the rate Eat which energy is supplied to the rectangle by the wall 
and the rate - u, Pas Ns- Q, N ,  at which energy is supplied to it by the flow must 
sum to zero. So, upon employing the decomposition (12), the definition (15) of slip 
velocity, and the boundary condition (30), we obtain 

Ma V ,  - D = Q, N,. 

We note that when there is a slip velocity, the boundary may supply energy to the 
flow. 

We next employ the balance laws (22)-(24), the constitutive relations (25)-(29), 
and the boundary conditions (30) and (31) to determine the mean fields p,u, and T 
and the slip velocity 0 in a simple, steady flow. 

6. A boundary-value problem 
We consider a steady rectilinear flow maintained in the absence of gravity by the 

relative motion of parallel bumpy boundaries. This boundary -value problem has 
been considered previously by Jenkins & Savage (1983), Haff (1983), and Hui et al. 
(1984) for other, simpler, boundary conditions. 

We adopt rectangular Cartesian coordinates x and y and suppose that the walls 
to which the half-disks are attached are located at  y = f+L. The upper wall moves 
in the x-direction with constant speed U ,  the lower wall moves with the same speed 
in the opposite direction. In this steady rectilinear flow the x-component u of the 
mean velocity, the granular temperature T, and the area fraction v are functions of 
y alone. 

In  this event, the balance of mass (22) is satisfied identically and the x- and 
y-components of the linear momentum balance (23) reduce to 

q.. = 0, Puu = 0. (32a, b)  

where a prime denotes a derivative with respect to y. In these, from (29), we have 

Pzu = -+Ku‘, Puy = 2pvg, T .  
Equations (32) may be integrated immediately to 

~ K U ’  = A, zpvg, T = N ,  ( 3 4 ~ ~  b )  

where S and N are, respectively, the constant values of the shear stress and pressure. 
We may use (34b) with the definition (26) of K to write K in terms of N: 

then (34a), becomes 

We note that when cru’lT: is of order A, then so is SIN.  
In this flow the energy balance (24) reduces to 

&;+Px.u’+y = 0, (37) 
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where Pzy is given by (33a), and, from (28) and (25), 

4( 1 - e) KT 
6 2  

Q , = - K T ,  y =  

Upon employing these and using (35) and (36) to eliminate, respectively, K and u’ 
from the resulting equation, we obtain a linear second-order differential equation for 
w = Ti: L2wt’-h2w = 0,  (39) 

where 

The solution of (39) that satisfies the condition w’(0) = 0 is 

w = A cosh(z),  

where A is a constant to be determined. Then the corresponding solution of (36) that 
satisfies the condition u(0) = 0 is 

sinh (g). S L A  u = 2n:- - - 
NCTA 

At y = +L, u differs from U by the slip velocity v, so 

Then 

and 

1 ~ ( U - V )  N V  A = -  -- 
27d sinh (+A) S L’ 

I A(U-v)  NCT - - cosh e) 
= %d sinh (fh) S L 

U =  (’-’) s i n h e ) .  
sinh (+A) 

(43) 

(45) 

We next use the boundary conditions (30) and (31) to determine v, A and v(!jL). 
Because SIN  is given in terms of h through (40), the solutions for w and u will then 
be complete. The variation of v is governed by (34b) in which N is determined by the 
knowledge of v and w at +L. 

A t  the upper wall, N, = 7# = 0, N ,  = - 7, = - 1 and the non-vanishing components 

(46) 
of Iajy are 

and (47) 

I,,, = 2 -$ sin2 8 

I,,, = I,,, = I,,, = $ sin2 8. 

The normal component of the boundary condition (30) is 

N,  Ma = N,  Pap N j .  

With (19), (33b), and (34b), this becomes 

pxT = N or x =  2~9,.  (49% b)  

Consequently, if the dependence of x on v could be determined, then (49b) fixes the 
value of v at the wall. We anticipate that x also depends upon the size and spacing 
of the wall disks; for, although the shielding of a wall disk by its neighbours has been 
accounted for explicitly, x should at least include the effect of flow disks shielding 
a wall disk. If, for example, we were to ignore this and identify x with go, then 
v(+L) = 4, independent of the geometry of the boundary. 

3-2 
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The tangential component of (30) is 

7, Ma = 7, PapNp, 

or 1 2 3u' 
3 w  

(:)'pXT [ (e cosec e - c0s e) + - - sin2 e = +Ku'. 

If, in this, we use (49a) and the first integrals (34a) and (36), it becomes 

w x t S [ l -  (42/23/3a) sin2 01 
w 2 3 (~cosec6-cos8) * 

- = (-) 
This is a balance between quantities of order €4. We note that when (42/23/3a) sin2 6 
is greater than one, the slip velocity is negative, which appears to be unrealistic. 
However the flow field has been somewhat artificially extended to include the entire 
region between the tips of the wall disks and the wall. It is possible to show that this 
expression for the slip velocity leads to mean flow velocities at  the tips of the wall 
disks that can never be greater than the wall velocity. 

The energy boundary condition (31) at the upper wall may be written with the help 
of (19)-(21), (38), (35), and (49b) as 

> [  1 (:y(ecosece-cos8)+- v --sin20 23u' 
w 3 w  ( - 1/2-+(1-eW)ecosece = 0. (53) 

When v/w and 3u'lw are of order €4 and 3w'lw and (1 - e,) are of order e,  the energy 
boundary condition is a relation between quantities of order e. In this we use (52) 
and (36) to express v/w and 3u'lw in terms of S I N  and replace uw'lw by its value 
at the wall calculated from the solution (44) and obtain 

U 
22/2-+A tanh (+A) = - (1  - e,) 0 cosec 0. (54) L 

Now, from the definition (40) of A ,  

so (54) is a transcendental equation to be solved for +A. 
The solution of this equation may be simplified by the following order of 

magnitude considerations. We have shown that the assumption that 3u'/w is of 
order d implies that SIN is also of order 8. We have also assumed that 3w'lw is of 
order e and, using (44), this implies that (5lL) A tanh (+A) is of order e. Consequently, 
A is of order one. Then, with (1  - e )  of order e,  (55) gives, up to an error of order e2, 

2(1-e) 
R 

With this, (54) simplifies to 

-I}. (57) 
( l -e )  sin8[1-(42/2iT/3a) sin28] 

O(8cosecO-cosO) 

When the quantity in brackets is positive, then A is real and the solutions (44) and 
(45) involving the hyperbolic functions apply. In  this case, the granular temperature 
attains its maximum value at the wall and decreases towards the centre, and the wall 
supplies fluctuation energy to the flow. Then equation (34b) shows that the area 
fraction has its greatest value at  the centreline and decreases towards the walls. 
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FIGURE 2. Curves of  h = 0 in the space of diameter ratio a / d  and non-dimensional spacing s / d  for 
(1 - e)/( 1 - e,) = 4, I ,  and 2. The dotted curve is the graph of s / d  = - 1 + (1  + 2 r / d ) t ,  above which 
flow disks collide with the flat wall. 

I I I I I 
0 0.25 0.50 0.75 1 .o 

sld 
FIGURE 3. The non-dimensional slip velocity 8 / U  at the tips of the wall disks, versus the 
non-dimensional spacing s / d  for diameter ratios a / d  = $ , l  and 3 when a / L  = and e = e, = 0.9. 

When the quantity in brackets is negative, then A is imaginary and the solutions 
corresponding to (44) and (45) may be written in terms of trigonometric functions. 
The determinations of A leading to solutions involving negative values of the 
granular temperature must be excluded. In  this case, the granular temperature is 
greatest on the centreline and decreases toward the walls where fluctuation energy 
is absorbed from the flow. The area fraction is greatest at the walls and decreases 
toward the centreline. 

The critical case occurs when the quantity in brackets, and A, vanish. This is a 
simple homogeneous shearing flow with T, u' and v constant. In figure 2 we show the 
locus of A = 0 in the space of diameter ratio u/d and non-dimensional spacing s/d 
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W I  u 
FIGURE 4. Distributions across the gap of the measure w / U  of the granular temperature when 

u = d ,  e = e, = 0.9, and u/L = for s / d  = 0,0.346 and 0.732. 

U I  CI 

FIGURE 5. Distributions of the non-dimensional mean velocity u / U  across the gap when u = d ,  
e = e, = 0.9 and u/L = for s/d  = 0,0.346 and 0.732. 

for several values of (1 -e)/(i -ew). In the region of the space above a curve A = 0, 
the solutions are given in terms of trigonometric functions; below such a curve, in 
terms of hyperbolic functions. 

With A determined, the slip velocity is obtained by employing (44) in (52) : 

2 4 2  L (0 coaec6-cosO) 
= I + - -  tanh (+A). 

U 
v h cr [ 1 - (41/2@/3cr) sin2 01 
- 

With this, the temperature and velocity profiles are given in terms of known 
quantities by (44) and (45). 
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9 
Y 

FIGURE 6. Distribution of area fraction v across the gap when u = d, e = e, = 0.9 and a / L  = 
for s ld = 0.346 and 0.732. 

We have obtained solutions for several values of the diameter ratio u/d, assuming 
that e = e, = 0.9, and a /L  = &. In figure 3 we indicate how the slip velocity 8 
at  the tips of the disks varies with wall-disk spacing for these diameter ratios. In 
figures 4 and 5 we show the profiles of granular temperature and mean velocity for 
wall disks and flow disks of equal diameter. In each figure profiles are given for the 
two extremes of wall-disk spacing, s/d = 0 and 0.732, and for the spacing 
s / d  = 0.346. To this point the analysis is independent of the form of x. 

For such solutions, knowledge of x fixes v at the wall. Then N is determined from 
(34b), and the variation in area fraction is obtained from the relation 

by solving numerically for v at various values of y.  For example, upon supposing 
that x = go, we obtain the three area-fraction profiles shown in figure 6. When 
s/d  = 0.346 the spacing between wall disks is the same as the mean separation 
between the flow disks at v = i. 

7. Discussion 
We have taken care to indicate the assumed orders of magnitude of quantities that 

enter into the calculations and to show that these assumptions lead to relations 
between quantities of the same orders of magnitude. This was done because energy 
is balanced at  a higher order than momentum and, unless such care is taken, terms 
may be incorrectly included or excluded from the energy balances. Of course these 
assumptions restrict the range of applicability of the theory to wall disks and flow 
disks that are smooth, nearly elastic, and whose diameters do not differ greatly. Still, 
the results should be of interest to those carrying out experiments and numerical 
simulations. 

For example, our analysis shows that a, steady shearing flow generated by the 
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relative motion of parallel plates a fixed distance apart will only be obtained for a 
definite number of flow disks across the gap. If an experiment or simulation is 
initiated with the wrong number of disks, steady flow will not be attained or the disks 
may arrange themselves into rigidly translating layers to create internal boundaries. 
Also, if a homogeneous shearing flow is desired, it can only be achieved by tuning 
the boundary to the flow. For smooth, nearly elastic disks, figure 2 indicates how this 
can be done for several values of (1 - e ) / (  1 - ew) .  

The results displayed in figure 3 show that the slip velocity at  the tips of the disks 
may be decreased by either increasing the spacing of the wall disks while holding the 
ratio of the diameters fixed or by decreasing the diameter of the flow disks relative 
to the wall disks a t  fixed spacing. Either change results in o rougher wall. 

The distributions of w/ U ,  u/ U and v across the gap shown in figures 4, 5 and 6 
exhibit features that we have already described. As can be determined from figure 
2 for the case e = ew and r = d, both hyperbolic and trigonometrio solutions are 
obtained, depending on the spacing of the wall disks. Because of our identification 
of the correction to the collision frequency at the wall with that in the flow, the area 
fraction at  the wall for each spacing of the wall disks ie equal to t. However at the 
tips of the wall disks the area fractions are different for each spacing. 

The extension of these results to systems involving significant disaipation of 
energy, such as rough, inelastic disks, awaits the development of constitutive 
relations for these materials. It is likely that these will involve measures of the 
internal state of the material that are more elaborate than the granular temperature 
and will be nonlinear in, at least, the gradients of the mean velocity. 

This work was supported by a grant from the Geotechnical Engineering Division 
of the US National Science Foundation. 

Appendix A 
We consider the flow of a granular material consisting of identical, smooth, nearly 

elastic, spheres of mass m and diameter CT and calculate the boundary conditions for 
the pressure tensor and energy flux vector at a bumpy boundary. The boundary is 
composed of identical, smooth, nearly elastic, hemispheres of diameter d attached to 
a flat wall. 

The hemispheres are aesumed to be randomly distributed over the wall eo that the 
mean spacing between their edges is 8.  Then, in mean, the neighbourhood of any 
hemisphere is symmetric about an axis through its centre and normal to the wall. 
Equivalently, the nearest neighbour of any hemisphere is, on average, half of o torus 
with inner diameter d + 28, outer diameter 3d + 28, and height $I?. A plane through 
the centre of the hemisphere and its mean neighbouring torus is shown in figure 1. 

Clearly with this simplified characterization of the boundary geometry the 
condition prohibiting collisions with the flat wall is identical with that for disks, and 
the angle 19 retains its significance and is defined as before. The average number a 
of hemispheres per unit area of the flat wall is 4/51(d+~)~. The extension of the 
notation from two to three dimensions is, in most cases, obvious; we supply 
redefinitions when necessary. 

The expression corresponding to (10) for the collisional rote of production of $(c), 
per unit area of the flat wall, is 

C($) = ax Is A ~ f ( c ,  r +*k) iP(g*k)  dk dc, (A 1)  

where k is the unit vector directed from the centre of the hemisphere to the centre 
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of a colliding sphere; dk is the element of solid angle about k; and the integrations 
are to be carried out over those values of c, polar angle k, and circumferential angle 
gi for which a collision can occur, 0 < k < 8 and g-k > 0. 

We employ the three-dimensional Maxwellian 

where 

and the expansion corresponding to (18). Then, with @ = mc in (A 1))  we integrate 
as outlined in Appendix B and obtain 

(A 4) 
where we have used ?Pa = l/n sin2 8 ,  and 

z$ jk  = (sin28-2)NgNjN,-+ sin28[Ng ( T ~ T ~ + ~ ~ ~ ~ ) + N , ( T ~ T ~ + ~ ~ ~ ~ ) + N ~ ( T ~ T ~ + ~ ~ ~ ~ ) ] .  

(A 5) 
in which N, z, t is an orthonormal triad. In a similar fashion, with @ = 3;mc3 in (A l ) ,  
we obtain 

E = M * U - D  (A 6) 

(A 7) D = - px( 1 - e k )  Ti( 1 - cos 8) cosec2 8. 
with (3 
The boundary conditions corresponding to (19) and (21) are, then, 

= 8 k  Nk (A 8) 

and J 4 V t - D  = & * N , ,  (A 9) 

with M and D given by (A 4) and (A 7) respectively. 

Appendix B 

and D for disks and spheres. 
Here we outline the details of the integrations involved in the calculation of M 

For disks, the typical integral is of the form 

IJg ...g k.. .k(g*k)p exp( - g ) d k d g  (B 1 )  

where the integration is over all go& > 0 with -8 < k < 8, p is an integer, and a is 
a constant. 

We write g = Gk+ Hj,  where j is a unit vector normal to k in the plane; express 
the tensor product of the vectors g in terms of these components; and carry out the 
integrations over G, 0 < G < 00, and H, - 00 < H < 00, with the help of the standard 
results 

when q is even, and 
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The remaining integrations ar of the form 

l k  ... kdk. 

We write k = cos kN+ sin kz, express the tensor product of the vectors k in terms 
of these components, and integrate over k, - 8 < k < 8. The results necessary for the 
calculation of M and D are 

dk = 28; (B 5 )  

(B 6) 

(B 7)  

l 
Sk,dk = 2 sinON,; 

kakpdk = +(28+sin28) NaNB++(28-sin28)~a~B; I 
ka kp ky dk = - sin t910,py, (B 8 )  I and 

where IapY is defined in (20). 
For spheres, the typical integral is of the form (B 1) with g and k vectors in three 

dimensions and dk replaced by the element of solid angle dk. When g is written in 
terms of its components with respect to the orthonormal basis k, j ,  i and the tensor 
products of the vectors g are expressed in terms of these components, the integrations 
over the components are carried out as in the two-dimensional case. 

There remain integrals of the form 

k.. .k dk. 

We write k = cos kN+ sin k cos $7 +sink sin $t and dk = sink dk d$ ; express the 
tensor product of the vectors k in terms of these components; and integrate over 
$, 0 < 9 < 271, and k, 0 < k < 0. The results necessary for the calculation of M and 
D are 

and 

dk = 2x(1 - cos8 ) ;  s 
k,dk = x sin28N,; (B 11) 

(B 12) k, kj dk = p( 1 - cos3 8 )  N ,  N j +  ix(2 - 3 cos8+ cos3 8) (7, T~ + t, t j ) ;  I s ki kj k, dk = -+x sin2 SI,,,, 

where Igjk is defined in (A 5 ) .  
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